High-pressure Synthesis, Crystal Structure, and Properties of the First Ternary Zirconium Borate β -ZrB₂O₅

Johanna S. Knyrim^a and Hubert Huppertz^b

^a Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5 – 13 (Haus D), 81377 München, Germany

b Institut für Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria

Reprint requests to H. Huppertz. E-mail: hubert.huppertz@uibk.ac.at

Z. Naturforsch. 2008, 63b, 707 - 712; received January 9, 2008

Dedicated to Professor Gérard Demazeau on the occasion of his 65th birthday

The high-pressure phase β -ZrB₂O₅ represents the first ternary borate in the system Zr-B-O. The compound was synthesized under high-pressure / high-temperature conditions of 7.5 GPa and 1100 °C in a Walker-type multianvil apparatus. The crystal structure was determined on the basis of single crystal X-ray diffraction data, collected at room temperature. The monoclinic zirconium borate crystallizes in the space group $P2_1/c$ with the lattice parameters a = 439.04(9), b = 691.2(2), c = 896.8(2) pm, and $\beta = 90.96(3)^\circ$. The structure is isotypic to the high-pressure phase β -HfB₂O₅, which is built up from layers of exclusively corner-sharing BO₄ tetrahedra. Between these layers, the cations are coordinated square-antiprismatically by eight oxygen atoms.

Key words: High Pressure, Crystal Structure, Multianvil, Borate, Gadolinite

Introduction

In the last years, high-pressure / high-temperature studies in the chemistry of oxoborates led to a large variety of new polymorphs like β -MB₄O₇ (M =Mn [1], Ni [1], Cu [1], Zn [2], Ca [3], Sn [4], Hg [5]), the rare-earth *meta*-oxoborates δ -RE(BO₂)₃ (RE = La, Ce) [6, 7], and a new non-centrosymmetric modification of bismuth triborate, δ -BiB₃O₆ [8]. New compositions could be realized in the compounds $RE_3B_5O_{12}$ (RE = Tm-Lu) [9] and $Pr_4B_{10}O_{21}$ [10]. Furthermore, the oxoborates $RE_4B_6O_{15}$ (RE = Dy, Ho) [11-13], α - $RE_2B_4O_9$ (RE = Sm-Ho) [14-16], and the recently found HP-NiB₂O₄ [17] showed, next to new compositions, the structural feature of edge-sharing BO₄ tetrahedra. In this connection, the latter compound HP-NiB₂O₄ represents the first borate in which every BO₄ tetrahedron shares one common edge with another BO₄ tetrahedron.

To our knowledge, no ternary phases are known in the system Zr-B-O, but several quaternary phases, namely $Ni_5ZrO_4(BO_3)_2$ [18], $K_2Zr(BO_3)_2$ [19], $(Co_{1.5}Zr_{0.5})(BO_3)O$ [20], $BaZr(BO_3)_2$ [21], Zr_3V_3 $B_{0.384}O_{0.576}$, and $Zr_3V_3B_{0.24}O_{0.36}$ [22] have been described. We were now able to synthesize the

first ternary zirconium borate, which is built up analogously to β -HfB₂O₅ [23]. Due to the fact that β -ZrB₂O₅ is a high-pressure phase, we labeled it with the Greek character " β ". Attempts to synthesize the ambient-pressure zirconium diborate " α -ZrB₂O₅" are currently made. In this publication, we report the synthetic conditions, structural details, and thermal behavior of the phase β -ZrB₂O₅ in comparison to the isotypic compound β -HfB₂O₅.

Experimental Section

 $\beta\text{-}ZrB_2O_5$ was synthesized under high-pressure / high-temperature conditions of 7.5 GPa and 1100 °C. According to Eq. 1, the starting reagents were monoclinic ZrO_2 (Baddeleyite) (Strem Chemicals, Newburyport, USA, 99.9 %) and B_2O_3 (Strem Chemicals, Newburyport, USA, 99+ %), which were ground together and filled into a boron nitride crucible (Henze BNP GmbH, HeBoSint $^{\circledR}$ S10, Kempten, Germany) in the molar ratio ZrO_2 : $B_2O_3=1$: 1.

$$ZrO_2 + B_2O_3 \xrightarrow{7.5 \text{ GPa}} \beta - ZrB_2O_5$$
 (1)

The boron nitride crucible was positioned inside the center of an 18/11 assembly, which was compressed by eight tungsten carbide cubes (TSM-10 Ceratizit, Reutte, Austria).

0932–0776 / 08 / 0600–0707 \$ 06.00 © 2008 Verlag der Zeitschrift für Naturforschung, Tübingen \cdot http://znaturforsch.com

Table 1. Crystal data and structure refinement for β -ZrB₂O₅.

, , , , , , , , , , , , , , , , , , ,	2 - 3
Empirical formula	ZrB ₂ O ₅
Molar mass, g⋅mol ⁻¹	192.84
Crystal system	monoclinic
Space group	$P2_1/c$ (no. 14)
Powder diffractometer	Stoe Stadi P
Radiation	MoK_{α} ($\lambda = 71.073$ pm)
Powder-diffraction data	
a, pm	440.21(2)
b, pm	693.15(3)
c, pm	899.24(3)
β , deg	90.93(1)
Volume, nm ³	0.27435(2)
Single crystal diffractometer	Enraf-Nonius Kappa CCD
Radiation	MoK_{α} ($\lambda = 71.073$ pm)
Single crystal data	
a, pm	439.04(9)
b, pm	691.2(2)
c, pm	896.8(2)
β , deg	90.96(3)
Volume, nm ³	0.2721(2)
Formula units per cell, Z	4
Temperature, K	293(2)
Calculated density, g⋅cm ⁻³	4.71
Crystal size, mm ³	$0.02 \times 0.02 \times 0.02$
Detector distance, mm	30.0
Absorption coefficient, mm ⁻¹	3.9
F(000), e	360
θ range, deg	3.7 to 34.8
Range in hkl	$-6/+7, -11/+10, \pm 14$
Total no. reflections	2203
Independent reflections	$1166 (R_{\rm int} = 0.0352)$
Reflections with $I \ge 2\sigma(I)$	969 ($R_{\sigma} = 0.0437$)
Absorption correction	multi-scan (SCALEPACK [45])
Data / parameters	1166 / 73
Goodness-of-fit (F^2)	1.027
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.026$
	$wR_2 = 0.054$
R Indices (all data)	$R_1 = 0.038$
_	$wR_2 = 0.058$
Larg. diff. peak and hole, $e \cdot \mathring{A}^{-3}$	0.79 / -0.93

The assembly was compressed to 7.5 GPa in 3 h, using a multianvil device, based on a Walker-type module and a 1000 t press (both devices from the company Voggenreiter, Mainleus, Germany). A detailed description of the preparation of the assembly can be found in references [24–27]. The sample was heated to 1100 °C (cylindrical graphite furnace) in 10 min, kept at this temperature for 5 min, and cooled down to 750 °C in 15 min at constant pressure. Afterwards, the sample was quenched to r. t. by switching off the heating, followed by a decompression period of 9 h. β -ZrB₂O₅ was separated from the surrounding boron nitride and obtained as a colorless, air- and water-resistant, crystalline solid.

Next to β -ZrB₂O₅, the powder diffraction pattern of the product showed unreacted ZrO₂, whereas the corresponding B₂O₃ could not be determined by powder diffraction (X-ray amorphous).

Table 2. Atomic coordinates (Wyckoff site 4e for all atoms) and isotropic equivalent displacement parameters $U_{\rm eq}$ ($\mathring{\rm A}^2$) for β -ZrB₂O₅ (space group: $P2_1/c$). $U_{\rm eq}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atom	x	у	Z	$U_{ m eq}$
Zr	0.00127(5)	0.11284(3)	0.67103(2)	0.00605(7)
B1	0.5271(6)	0.2299(4)	0.4230(3)	0.0072(5)
B2	0.4641(6)	0.0868(4)	0.1656(3)	0.0072(5)
O1	0.7861(4)	0.0902(2)	0.1790(2)	0.0076(3)
O2	0.3307(4)	0.8955(2)	0.1504(2)	0.0077(3)
O3	0.3477(4)	0.2212(2)	0.0540(2)	0.0082(3)
O4	0.3055(4)	0.1549(3)	0.3077(2)	0.0074(3)
O5	0.7689(4)	0.0974(2)	0.4674(2)	0.0080(3)

Crystal structure analysis

The powder diffraction pattern of monoclinic β -ZrB₂O₅ was collected with a Stoe Stadi P diffractometer, using monochromatized MoK $_{\alpha}$ ($\lambda=71.073$ pm) radiation. The diffraction pattern of β -ZrB₂O₅ was indexed with the program ITO [28] on the basis of a monoclinic unit cell. The lattice parameters a=440.21(2), b=693.15(3), c=899.24(2) pm, and $\beta=90.93(1)^{\circ}$ (Table 1) were obtained from least-squares fits of the powder data. The correct indexing of the pattern was confirmed by intensity calculations [29], taking the atomic positions from the structure refinements of β -ZrB₂O₅ (Table 2). The lattice parameters determined from the powder and the single crystal data (a=439.04(9), b=691.2(2), c=896.8(2) pm, and $\beta=90.96(3)^{\circ}$) agree well.

For the crystal structure analysis, small single crystals of β-ZrB₂O₅ were isolated by mechanical fragmentation and examined using a Buerger camera, equipped with an image plate system (Fujifilm BAS-1800) in order to establish both symmetry and suitability for the collection of intensity data. Single crystal intensity data were collected at r. t. from a colorless crystal using an Enraf-Nonius Kappa CCD with graphite-monochromatized Mo K_{α} ($\lambda = 71.073$ pm) radiation. A multi-scan absorption correction (SCALEPACK [46]) was applied to the intensity data. According to the systematic extinctions h0l with $l \neq 2n$, 0k0 with $k \neq 2n$, and 00lwith $l \neq 2n$, the monoclinic space group $P2_1/c$ (no. 14) was derived. All relevant details of the data collections and evaluations are listed in Table 1. The starting positional parameters were taken from the structural refinement of β -HfB₂O₅ [23]. Structure solution and parameter refinement with anisotropic displacement parameters for all atoms (full-matrix leastsquares against F^2) were successfully performed with the SHELXS/L-97 software suite [30, 31]. The final difference Fourier synthesis did not reveal any significant residual peaks (see Table 1). The positional parameters, anisotropic displacement parameters, interatomic distances, and angles are listed in Tables 2-5.

Further details of the crystal structure investigation may be obtained from the Fachinformationszentrum

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Zr	0.0064(2)	0.0059(2)	0.0059(2)	0.00001(7)	0.00026(7)	0.00003(8)
B1	0.008(2)	0.007(2)	0.007(2)	-0.0015(8)	-0.0002(9)	-0.0001(9)
B2	0.008(2)	0.007(2)	0.007(2)	-0.0003(8)	0.0016(9)	0.0008(9)
O1	0.0071(7)	0.0084(8)	0.0071(7)	0.0013(6)	0.0001(6)	0.0000(6)
O2	0.0084(7)	0.0065(8)	0.0083(7)	0.0003(6)	0.0016(6)	0.0005(6)
O3	0.0083(7)	0.0076(8)	0.0088(7)	0.0011(6)	0.0010(6)	0.0019(6)
O4	0.0080(7)	0.0076(7)	0.0065(7)	0.0003(6)	-0.0001(6)	-0.0003(6)
O5	0.0091(7)	0.0071(8)	0.0077(7)	0.0013(6)	0.0003(6)	0.0008(6)

Table 3. Anisotropic displacement parameters U_{ij} (Å²) for β -ZrB₂O₅ (space group $P2_1/c$).

Table 4. Interatomic distances (pm) calculated with the single crystal lattice parameters of β -ZrB₂O₅ with standard deviations in parentheses.

		B2 O4	$\emptyset = 146.4$
		B2-O4	153.6(3)
	$\emptyset = 221.7$	B2-O3	145.2(3)
Zr-O4b	241.0(2)	B2-O2	145.2(3)
Zr-O4a	229.8(2)	B2-O1	141.7(3)
Zr–O1b	226.1(2)		
Zr-O3	218.7(2)		$\emptyset = 147.1$
Zr-O2	218.4(2)	B1-O4	150.1(3)
Zr-O5b	217.1(2)	B1-O2	146.5(3)
Zr–O1a	214.6(2)	B1-O3	146.5(3)
Zr–O5a	207.9(2)	B1-O5	145.3(3)

Table 5. Interatomic angles (deg) calculated with the single crystal lattice parameters of β -ZrB₂O₅ with standard deviations in parentheses.

O2-B1-O4	103.7(2)	O2-B2-O4	99.8(2)
O3-B1-O4	106.3(2)	O3-B2-O4	102.5(2)
O5-B1-O2	107.5(2)	O2-B2-O3	112.4(2)
O5-B1-O3	109.0(2)	O1-B2-O3	112.8(2)
O2-B1-O3	114.8(2)	O1-B2-O4	113.0(2)
O5-B1-O4	115.7(2)	O1-B2-O2	115.0(2)
	$\emptyset = 109.5$		$\emptyset = 109.3$

Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; e-mail: crysdata@fiz-karls ruhe.de, http://www.fiz-informationsdienste.de/en/DB/icsd/depot_anforderung.html) on quoting the deposition number CSD-418931.

Results and Discussion

The crystal structure of β -ZrB₂O₅ is built up exclusively from corner-sharing BO₄ tetrahedra (Q³), forming layers separated by zirconium cations (Fig. 1). Fig. 2 gives a view of the crystal structure along [100], showing eight-membered rings, occupied by the Zr⁴⁺ ions and four-membered rings remaining empty. These rings are interconnected to layers, that spread out in the *bc* plane. Fig. 3 gives a view of the coordination of the Zr⁴⁺ ions, which are surrounded by eight oxygen atoms forming a square antiprism. Inside the framework of BO₄ tetrahedra, the B–O dis-

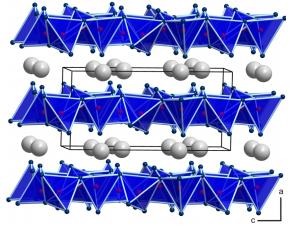


Fig. 1 (color online). A view of the crystal structure of β -ZrB₂O₅ along [010], exhibiting layers of BO₄ tetrahedra and Zr⁴⁺ ions.

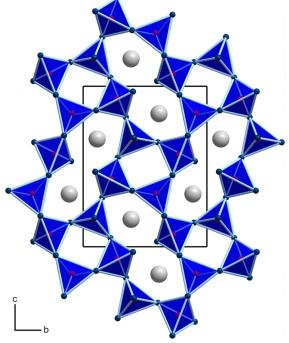


Fig. 2. (color online). Top view along [100] of one borate layer in β -ZrB₂O₅.

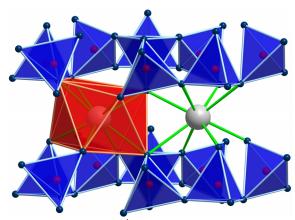


Fig. 3. (color online). Zr^{4+} ions in β - ZrB_2O_5 in a distorted square-antiprismatic coordination.

tances of the two crystallographically distinguishable BO₄ groups vary between 142 and 154 pm (Table 4). The average B-O bond length of 146.8 pm corresponds to the known average value of 147.6 pm for boron-oxygen distances in BO₄ tetrahedra [32, 33]. The O-B-O bond angles range from 99.8 to 115.7° with a mean value of 109.4°. The application of Liebau's nomenclature for silicates [34] to the arrangement of tetrahedra in the structure of β -ZrB₂O₅ leads to the formula $Zr\{uB,1_{\infty}^2\}[^4B_2O_5]$, representing an unbranched "Vierer" single layer. The Zr-O distances vary from 208 to 241 pm with an average value of 221.7 pm. This is slightly longer than the average Zr-O distance of 219.8 pm in zirconia (ZrSiO₄) [35] or of 219.5 pm in ZrMo₂O₈ [36], which both exhibit zirconium in eight-fold coordination as well.

A comparison of β -ZrB₂O₅ to the isotypic phase β -HfB₂O₅ shows that the bond lengths and angles of the two phases are nearly identical. This is in accord with the similar ionic radii of Zr⁴⁺ (98 pm) and Hf⁴⁺ (97 pm) in an eightfold oxygen-coordination. Accordingly, the lattice parameters of β -ZrB₂O₅ (a = 439.04(9), b = 691.2(2), c = 896.8(2) pm, and β = 90.96(3)°) are nearly equal to those of β -HfB₂O₅ (a = 438.48(9), b = 690.60(2), c = 897.60(2) pm, and β = 90.76(3)°).

A close comparison of the arrangement of the BO_4 tetrahedra in the isotypic phases β - MB_2O_5 (M=Zr, Hf) with other structures show that in minerals of the gadolinite group the topology of the tetrahedra is virtually identical. A more detailed description, including a discussion of the related structures, can be found in reference [23].

Table 6. Charge distribution in β -ZrB₂O₅, calculated with the bond length / bond strength (ΣV) [37, 38] and the CHARDI concept (ΣQ) [39].

	Zr	B1	B2	O1	O2	О3	O4	O5
ΣQ	+3.87	+3.06	+3.13	-1.87	-2.09	-2.09	-2.00	-2.02
ΣV	+4.01	+2.97	+3.02	-1.93	-2.10	-2.09	-1.81	-2.07

The calculation of bond valence sums for β -ZrB₂O₅ using the bond length / bond strength [37, 38] and the CHARDI concept (*charge distribution* in solids according to Hoppe [39]) confirmed the formal ionic charges resulting from the single crystal structure analysis. Table 6 shows the values for each atom, which are in agreement within the limits of both concepts.

Furthermore, we calculated the MAPLE value (*Ma*delung *P*art of *L*attice *E*nergy according to Hoppe [40–42]) of β -ZrB₂O₅ in order to compare it with the sum of the MAPLE values for the binary components ZrO₂ (Baddeleyite) [43] and the high-pressure modification B₂O₃-II [44] [ZrO₂ (12713 kJ mol⁻¹) + B₂O₃-II (21938 kJ mol⁻¹)]. The calculated value (34651 kJ mol⁻¹) for β -ZrB₂O₅ and the MAPLE value obtained from the sum of the binary oxides (34661 kJ mol⁻¹) tally well (deviation 0.03 %).

Thermal behavior of β -Zr B_2O_5

In situ temperature-programmed X-ray powder diffraction experiments were carried out on a Stoe Stadi P powder diffractometer (MoK_{α} radiation, λ = 71.073 pm) with a computer controlled Stoe furnace. The sample was enclosed in a quartz glass capillary and heated from r.t. up to 500 °C in steps of 100 °C, and from 500 to 1100 °C and back to 500 °C in steps of 50 °C. Below 500 °C, the temperature shift per range was again 100 °C. The heating rate was set

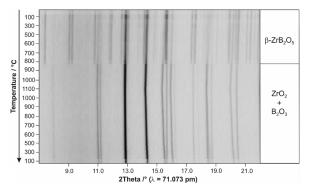


Fig. 4. Temperature-programmed X-ray powder diffraction patterns following the decomposition of β -ZrB₂O₅.

to 50 °C/min. After each step, a diffraction pattern was recorded over the angular range $7^{\circ} \leq 2\theta \leq 22^{\circ}$. Fig. 4 shows that β -ZrB₂O₅ is stable up to 800 °C and decomposes into monoclinic ZrO₂ (Baddeleyite) and presumably B₂O₃ beyond this temperature. This behavior was also observed for the isotypic hafnium borate β -HfB₂O₅, which decomposed into HfO₂ and B₂O₃ at a temperature of 800–850 °C [23].

Conclusions

High-pressure / high-temperature conditions led to the formation of the first ternary compound β -ZrB₂O₅ in the system Zr-B-O. Under normal pressure conditions, glasses are often the favored products of reactions in oxoborate chemistry. As demonstrated in this work, high-pressure / high-temperature conditions can force the formation of a crystalline product. This is supported by further examples like the synthesis of β -SnB₄O₇ [4], the first crystalline borate in the system Sn-B-O, for which previously only glasses were known. To our knowledge, no crystalline

or glassy compound is known in the system Zr-B-O until now. Thus, β -ZrB₂O₅ represents the first ternary zirconium borate. In earlier work, the high-pressure / high-temperature strategy was successful in the system Hf-B-O, for which no ternary phases had been known [23]. Through this approach, we hope to get access to other systems in oxoborate chemistry, for which no or only glass-forming compounds exist until now.

Acknowledgements

The authors gratefully acknowledge the continuous support of this work by Prof. Dr. W. Schnick, Department Chemie and Biochemie of the University of Munich (LMU). Special thanks go to T. Miller for the temperature-programmed *in situ* X-ray diffraction experiments and Dr. P. Mayer for collecting the single crystal data. This work was financially supported by the Deutsche Forschungsgemeinschaft HU 966/2-3 and the European Science Foundation through the COST D30/003/03 network "Development of Materials Chemistry using High Pressures". H. Huppertz is indebted to the Fonds der Chemischen Industrie for financial support.

- [1] J. S. Knyrim, J. Friedrichs, S. Neumair, F. Roeßner, Y. Floredo, S. Jakob, D. Johrendt, R. Glaum, H. Huppertz, *Solid State Sci.* 2008, 10, 168.
- [2] H. Huppertz, G. Heymann, Solid State Sci. 2003, 5, 281.
- [3] H. Huppertz, Z. Naturforsch. 2003, 58b, 257.
- [4] J. S. Knyrim, F. M. Schappacher, R. Pöttgen, J. Schmedt auf der Günne, D. Johrendt, H. Huppertz, Chem. Mater. 2007, 19, 254.
- [5] H. Emme, M. Weil, H. Huppertz, Z. Naturforsch. 2005, 60b, 815.
- [6] G. Heymann, T. Soltner, H. Huppertz, Solid State Sci. 2006, 8, 821.
- [7] A. Haberer, G. Heymann, H. Huppertz, Z. Naturforsch. 2007, 62b, 759.
- [8] J. S. Knyrim, P. Becker, D. Johrendt, H. Huppertz, Angew. Chem. 2006, 118, 8419; Angew. Chem. Int. Ed. 2006, 45, 8239.
- [9] H. Emme, M. Valldor, R. Pöttgen, H. Huppertz, *Chem. Mater.* 2005, 17, 2707.
- [10] A. Haberer, G. Heymann, H. Huppertz, J. Solid State Chem. 2007, 180, 1595.
- [11] H. Huppertz, B. von der Eltz, J. Am. Chem. Soc. 2002, 124, 9376.
- [12] H. Huppertz, Z. Naturforsch. 2003, 58b, 278.
- [13] H. Huppertz, H. Emme, J. Phys.: Condens. Matter 2004, 16, 1283.

- [14] H. Emme, H. Huppertz, Z. Anorg. Allg. Chem. 2002, 628, 2165.
- [15] H. Emme, H. Huppertz, Chem. Eur. J. 2003, 9, 3623.
- [16] H. Emme, H. Huppertz, Acta Crystallogr. 2005, C61, i29.
- [17] J. S. Knyrim, F. Roeßner, S. Jakob, D. Johrendt, I. Kinski, R. Glaum, H. Huppertz, *Angew. Chem.* 2007, 119, 9256; *Angew. Chem. Int. Ed.* 2007, 46, 9097.
- [18] K. Bluhm, Hk. Müller-Buschbaum, J. Less-Common Met. 1989, 147, 133.
- [19] A. Akella, D. A. Keszler, Inorg. Chem. 1994, 33, 1554.
- [20] A. Utzolino, K. Bluhm, Z. Naturforsch. 1995, 50b, 1653.
- [21] V. Hornebecq; P. Gravereau, J. P. Chaminade, E. Lebraud, *Mater. Res. Bull.* 2002, 37, 2165.
- [22] A. B. Riabov, V. A. Yartys', B. C. Hauback, P. W. Guegan, G. Wiesinger, I. R. Harris, J. Alloys Compd. 1999, 293, 93.
- [23] J. S. Knyrim, H. Huppertz, J. Solid State Chem. 2007, 180, 742.
- [24] V. F. Ross, J. O. Edwards, The Structural Chemistry of the Borates, Wiley, New York 1967.
- [25] D. Walker, M. A. Carpenter, C. M. Hitch, Am. Mineral. 1990, 75, 1020.
- [26] D. Walker, Am. Mineral. 1991, 76, 1092.
- [27] H. Huppertz, Z. Kristallogr. 2004, 219, 330.
- [28] J. W. Visser, J. Appl. Crystallogr. 1969, 2, 89.

- [29] Stoe & CIE GmbH, WinX^{POW} Software, Darmstadt (Germany) **1998**.
- [30] G. M. Sheldrick, SHELXS-97 and SHELXL-97 Program Suite for the Solution and Refinement of Crystal Structures; University of Göttingen, Göttingen (Germany) 1997.
- [31] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
- [32] E. Zobetz, Z. Kristallogr. 1990, 191, 45.
- [33] F. C. Hawthorne, P. C. Burns, J. D. Grice in: *Boron: Mineralogy, Petrology and Geochemistry*, 2nd ed., (Eds.: E. S. Grew, L. M. Anovitz), Mineralogical Society of America, Washington 1996, Vol. 33, pp 41.
- [34] F. Liebau, Structural Chemistry of Silicates, Springer, Berlin 1985.
- [35] L. W. Finger, Carnegie Institution of Washington: Yearbook 1974, 73, 544.
- [36] R. F. Klevtsova, L. A. Glinskaya, E. S. Zolotova, P. V. Klevtsov, Sov. Phys. Dokl. 1989, 34, 185.

- [37] I. D. Brown, D. Altermatt, Acta Crystallogr. 1985, B41, 244.
- [38] N. E. Brese, M. O'Keeffe, Acta Crystallogr. 1991, B47, 192.
- [39] R. Hoppe, S. Voigt, H. Glaum, J. Kissel, H. P. Müller, K. J. Bernet, J. Less-Common Met. 1989, 156, 105.
- [40] R. Hoppe, Angew. Chem. 1966, 78, 52.
- [41] R. Hoppe, Angew. Chem. 1970, 82, 7.
- [42] R. Hübenthal, MAPLE, program for the calculation of MAPLE values (version 4) University of Gießen, Gießen (Germany) **1993**.
- [43] F. J. Torres, J. M. Amigo, J. Alarcon, J. Solid State Chem. 2003, 173, 40.
- [44] C. T. Prewitt, R. D. Shannon, Acta Crystallogr. 1968, B41, 244.
- [45] Z. Otwinowski, W. Minor, Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A (Eds.: C. W. Carter Jr, R. M. Sweet), Academic Press, New York 1997, pp. 307.